ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001

Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001

Страница № 030.

Учебник: Сборник задач по алгебре: учебное пособие для 8-9 кл. с углубленным изучением математики - М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич; 7-е изд. — М.: Просвещение, 2001. — 271 с.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, «30», 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

3.128.    При каких натуральных значениях п дробь 2n^ Зп2 есть целое число?

3.129.    Докажите, что сумма четырех различных двузначных чисел, записанных с помощью двух заданных Цифр, не может быть квадратом целого числа.

3.130.    Докажите, что сумма квадратов пяти последовательных целых чисел не является квадратом целого числа.

3.131.    Найдите 1000 последовательных натуральных чисел, среди которых нет ни одного точного квадрата.

3.132.    Найдите знаменатель дроби, полученной после сокращения 100!

6'00 '

9119

3.133.    Какой цифрой оканчивается число 91191"1 ?

3.134.    Сколькими нулями оканчивается число 51! ?

3.135.    а) Сколькими нулями оканчивается число 400! ?

б) Четной или нечетной является последняя ненулевая цифра числа 400! ?

3.136.    Докажите, что если целое число а кратно 2, но не кратно 4, то у него четных делителей столько же, сколько и нечетных.

3.137.    Докажите, что из любых ста целых чисел всегда можно выбрать:

а)    два таких, что их разность делится на 99;

б)    несколько таких чисел (или, быть может, одно), что их сумма делится на 99.

3.138.    Докажите, что из п целых чисел всегда можно выбрать несколько таких чисел, что, поставив между ними знаки « + » и «—», получим число, делящееся на п.

3.139.    Имеется п целых чисел. Докажите, что среди них найдутся несколько (или, быть может, одно) таких чисел, что сумма их делится на п.

3.140.    Докажите, что существует число вида 19911991 ... 199100 ... 0, которое делится на 1992.

§ 4. КВАДРАТНЫЕ КОРНИ

1. Арифметический квадратный корень и его свойства.

Арифметическим квадратным корнем из числа а называется такое неотрицательное число, квадрат которого равен а, т. е. равенство л[а=Ь означает, что Ь2 = а и Ь^0.

Если а^0 и Ь^0, то л!аЬ = л[а-^Ь.

Если а>0 и Ь>0, то

V Ь ^

Если а^0, то (Уа)2 = а.

-\/а?=\а\ при любом значении а.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, «30», 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.