ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001

Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001

Страница № 060.

Учебник: Сборник задач по алгебре: учебное пособие для 8-9 кл. с углубленным изучением математики - М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич; 7-е изд. — М.: Просвещение, 2001. — 271 с.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, «60», 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Воспользуемся неравенством Коши между средним геометрическим и средним арифметическим двух положительных чисел: а +1 ^2 л/а, а+2^2 д/2а, а + 3^2 л/За, а+6^2-\/ба. Почленно перемножим полученные неравенства (это возможно, так как обе части каждого из них положительны): (а+1)(а + 2)(а + 3)Х Х(а + 6)^96а2. Заметим, что равенство здесь возможно лишь в случае, когда каждое из четырех перемножаемых неравенств обращается в равенство, но это означает, что а=1, а = 2, а = 3 иа = 6 одновременно, чего быть не может. Значит, (а + 1) (а + 2) X X (а + 3) (а + 6) > 96а2.

Пример 3. Для каждого значения параметра а решите систему неравенств:

Решение. Умножая обе части первого неравенства на 4, раскрывая скобки и перенося все слагаемые, содержащие переменную, в левую часть, а все константы — в правую часть неравенства, получим 5лс< —56, откуда х< —11,2.

Решая второе неравенство, рассмотрим три случая. Если а<0, то любое действительное число х является решением неравенства, а значит, решение системы совпадает с решением первого неравенства. Если а = 0, то решением неравенства |x|>0 является любое действительное число, отличное от нуля, а значит, и в этом случае решение системы совпадает с решением первого неравенства, так как 0£(— оо; —11,2). Если же а>О, то решением неравенства |jc| >а является совокупность -а,

и для отыскания решений системы необходимо сравнивать а с числом —11,2. Пересечением множеств (— оо; —11,2) и (—оо; —a)U(а; +оо) является интервал (— оо; —11,2), если 0<а^11,2, и интервал (—оо; —а), если а>11,2.

Ответ: (—оо; —11,2) при а^11,2; (—оо; —а) при а> 11,2.

3 (jc + 1) + 3,5 (jc + 3) < 5jc — 0,25 (2 — jc),

jc

1*1 >a.

Упражнения

ЧИСЛОВЫЕ НЕРАВЕНСТВА И ИХ СВОЙСТВА

6.1. Сравните числа а и 6, если известно, что:

а) а = Ь — 0,2;

в) а — 3 = 6— с, где с< 3;

д) а+1 =26, где 6> 1;

б) 6 + 3 = а + 2У2;

г) а + 2 = 6 + с, где с>2;

е) 6-fa = l+62.

6.2. Сравните числа:


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, «60», 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.