ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001

Сборник задач по алгебре, 8-9 класс (М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич) 2001

Страница № 108.

Учебник: Сборник задач по алгебре: учебное пособие для 8-9 кл. с углубленным изучением математики - М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич; 7-е изд. — М.: Просвещение, 2001. — 271 с.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, «108», 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Решая системы уравнений, обычно заменяют данную систему другой, равносильной исходной, которую решать проще. При этом можно использовать следующие утверждения о равносильности систем уравнений:

1)    если одно из уравнений системы заменить на равносильное уравнение, то получим систему, равносильную исходной;

2)    если одно из уравнений системы заменить суммой каких-либо двух уравнений данной системы, то получим систему, равносильную исходной;

3)    если одно из уравнений системы выражает зависимость какой-либо переменной, например х, через другие переменные, то, заменив в каждом уравнении системы переменную х на ее выражение через другие переменные, получим систему, равносильную исходной; например, системы уравнений

(х = у2— 1 <х = у2— 1

2 + у2 = 4 и { (г/2— 1)2 + у2 = 4 равносильны.

Основными средствами аналитического решения системы являются метод подстановки и метод введения новых переменных.

Для графического решения системы двух уравнений с двумя переменными надо построить в одной системе координат графики обоих уравнений и найти координаты точек пересечения этих графиков.

Пример 1. Решите уравнение:

а)    х3 — 5х— 12 = 0; б) 4 (х + 5) (х + 6) (х + 10) (х + 12) = 3х2.

Решение, а) Разложим на множители левую часть уравнения (это легко сделать, заметив предварительно, что число 3 является корнем уравнения), имеем:

3 — 27) — (5х — 15) = 0,

(х — 3) (х2 + Зх + 9 — 5) = 0, откуда х = 3.

б)    Записав уравнение в виде

4 (х2 + 17х + 60) (Xs + 1 бх + 60) = Зх2,

разделим обе его части на х1 (очевидно, что х = 0 не является корнем уравнения). Имеем:

4(|х+ 17 + ~~) (х+16 + -^-) =3.

Положим у = х+16 + -^-. Получим квадратное уравнение 4(у+1)-у = 3, т. е. 4у2+4у —3 = 0,

откуда у 1 = 0,5, г/г== — 1,5. Далее найдем х: из уравнения х+ 16 + +^- = 0,5 получаем Х\ — —8, хг= —7,5; уравнение х+ 16 + ^~ = = — 1,5 не имеет действительных корней.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, «108», 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.