ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] [ Алгебра ] « Геометрия » [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Геометрия, 10 класс (А. Д. Александров, А. Л. Вернер, В. И. Рыжик) 1999

Геометрия, 10 класс (А. Д. Александров, А. Л. Вернер, В. И. Рыжик) 1999

Страница № 080.

Учебник: Геометрия: Учеб. для учащихся 10 кл. с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик.— М.: Просвещение, 1999. — 238 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, «80», 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Если спуститься из точки М на плоскость а по прямой а, то пройдем расстояние h. Но можно спуститься и так: сначала провести перпендикуляр MN на прямую Ь, а затем перпендикуляр NC на прямую с. Четырехугольник AMNB — прямоугольник (так как MA\\NB и Z.MNB прямой). Поэтому NB = h и MN=p. Длина ломаной MNC равна р + Лэшф и больше длины наклонной МС (по неравенству треугольника). В свою очередь, наклонная МС длиннее перпендикуляра МА, и потому p + Asin ф>Л при любых h (так как-точку М мбжно взять любой на прямой а). Но такое неравенство

возможно лишь при h < t ;_^п ^ (напомним,

что втф<1). Получили противоречие: с одной стороны, h ограничено, а с другой А — может принимать любое значение. Это противоречие возникло благодаря предположению, что прямая b не перпендикулярна плоскости а': Итак, этого быть не может, т. е. а. В

Теперь ужё легко до,казать теорему 7.4. Пусть прямые а; и b перпендикулярны плоскости а. Докажем, что а\\Ь. Дрпустим, что это не так, т. е. что alfrb. Тогда проведём через точку А, в которой прямая а пересекает плоскость а,, прямую с\\Ь (рис. 77). По теореме 7.5 с А. а. Но тогда через точку А проходят две прямые а и с, перпендикулярные плоскости а, что невозможно. Итак, а\\Ь.

А теперь докажем теорему 7.4, не опираясь на теорему 7.5. Пусть снова прямые а и b перпендикулярны плоскости а ш пересекают ее в точках А и В соответственно. Проведем через прямую а и точку В плоскость. р и покажем, что прямая b также лежит в плоскости р (рис. 78).    .

В плоскости а возьмем отрезок MN, перпендикулярный отрезку АВ и имеющий точку А своей серединой. Так как AM=AN . и ABJ-MN, то

bm=bn . :

Возьмем на прямой b любую точку СфВ и проведем отрезки С A, CM, CN. Поскольку b.La, то треугольники СВМ и CBN прямоугольные. Они равны, так как имеют общий катет СВ и равные катеты ВМ и BN. Поэтому СМ = CN, т. е. треугольник CMN равнобедренный. Его медиана СА является также его высотой, т. е. CAJ-MN.

Итак, три прямые, проходящие через; точку

А,— АВ, АС и а — перпендикулярны прямой MN.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, «80», 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239



Все учебники по геометрии:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.