|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 10 класс (А. Д. Александров, А. Л. Вернер, В. И. Рыжик) 1999Страница № 147.Учебник: Геометрия: Учеб. для учащихся 10 кл. с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик.— М.: Просвещение, 1999. — 238 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, «147», 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239
OCR-версия страницы из учебника (текст страницы, которая находится выше):Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость (рис. 154). Ясно, почему это определение исключает случай, когда прямая перпендикулярна плоскости: в этом случае проекцией на' плоскость является точка. Если же прямая параллельна плоскости, то ее. проекцией будет прямая, параллельная данной прямой, т. е., как говорилось, угол между прямой и плоскостью ib этом случае равен 0°. г Угол между прямой и плоскостью обладает следующим свойством: он является наименьшим среди всех углов, которые данная прямая образует с прямыми, лежащими в данной плоскости, поэтому его и считают углом между прямой и плоскостью. Докажите это свойство самостоятельно. Идея доказательства указана на рисунке 155 (Z.ACO=/LBCO = =90°). 14.4. Двугранный уголПредставление о двугранных углах-дают двускатные крыши домов, приоткрытые двери и т. п., т. е. фигуры, образованные двумя полуплоскостями, имеющими общую границу. Соответственно этому и дается определение. 'Фигура, образованная в пространстве двумя полуплоскостями, имеющими общую граничную прямую и не лежащими в одной плоскости, называется двугранным углом (рис. 156). Сами полуплоскости называются гранями двугранного угла, а их общая граничная прямая — его' ребром. Измеряют двугранные углы следующим образом. На ребре m двугранного угла со с гранями аир отмечают точку О. Из точки О в его гранях проводят лучи а и Ь, перпендикулярные ребру- m:l.a 'в грани а и b в грани р (рис. 157). Угол со сторонами а, b называется линейным углом двугранного угла оэ. Двугранный угол измеряется его линейным углом. Величина линейного угла не зависит от выбора его вершины йа'ребре двугранного угла. 'Действительно, возьмем другую точку О'еи и проведем в гранях а и р из точки .О' лучи.a'J_пг и &'_1_т-(рис. 158). Поскольку а и а'лежат в одной полуплоскости а и перпендикулярны ребру пг, то а и а' сонаправлены. Аналогично получаем, что Ь\\Ь'. Но Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, «147», 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239
Учебник: Геометрия: Учеб. для учащихся 10 кл. с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик.— М.: Просвещение, 1999. — 238 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.