|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 10 класс (А. Д. Александров, А. Л. Вернер, В. И. Рыжик) 1999Страница № 151.Учебник: Геометрия: Учеб. для учащихся 10 кл. с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик.— М.: Просвещение, 1999. — 238 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, «151», 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239
OCR-версия страницы из учебника (текст страницы, которая находится выше):ный угол Oa'bc. В нем две грани — острые углы; / имеющие величины а и я — р, третья грань имеет величину я—у, и величина противолежащего ей- двугранного угла равна я — с. Применяя формулу (14.3) для случая 1), получаем: cos (я—у) = = cos .ос cos (я-г^+эш a sin (я — Р) cos'(я —с), откуда следует (14.3) для рассматриваемого случая. 4) Хотя бы. один из углов аир прямой. Тогда: равенство (14.3) можно получить предельным переходом ..из уже рассмотренных случаев 1) —3). Итак, формула '(14.3) (будем называть ее формулой косинусов) установлена для любых трехгранных углов. Из нее?с помощью обычных формул тригоно-метрии можно получить другие соотношения между;: элементами трехгранных углов. Выведем,, например,-аналог теоремы .синусов. Для этого.из (14.3) найдем cos с и, подставив его в равенство sin с == 1 — cos2c, получаем: ., sin2с= 1 -cos2c= 1 - (cos-?-cos a,cos Р)г= sin^ a sin2 p _ 1 — cos2 a—cos2 P—cos2 y + 2cos a cos P cos у sin2 a sin2 p * 1 : Поделив на sin2 у, получаем равенство _ . sin2 c__ 1—cos2 a—cos2 P—cos2 y+2 cos a cos P cos yt /14,44 sin2 у sin2 a sin2>p sin2 у : . Его правая часть симметрична относительно величин а, р, у. Следовательно, если так же вычислить • 2 Л • 2 £ отношения -8Шл а и sm, „, то справа получим то же вы-sirr a sin2 р Г ражение, что и в (14.4). Поэтому эти отношения равны, а так как входящие в них синусы все положитель-,, ны, то получаем следующий аналог те.оремы синусов для трехгранного угла: л л л , • sin a sin b sin с / \ л с\ -—=-—. (14.5) sin a sin р sin у Отметим еще один частный случай формулы (14.3): если двугранный угол при ребре с прямой, то cos с = 0, и получаем, что cos v=cos a cos p.’ (14.6) Равенство (14.6) является аналогом теоремы Пифагора для «прямоугольного» трехгранного угла: его «гипотенуза» у выражается через «катеты» аир. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, «151», 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239
Учебник: Геометрия: Учеб. для учащихся 10 кл. с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик.— М.: Просвещение, 1999. — 238 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.