|
ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте. 7 класс - 8 класс - 9 класс - 10 класс - 11 класс Геометрия, 10 класс (А. Д. Александров, А. Л. Вернер, В. И. Рыжик) 1999Страница № 146.Учебник: Геометрия: Учеб. для учащихся 10 кл. с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик.— М.: Просвещение, 1999. — 238 с.: ил. Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, «146», 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239
OCR-версия страницы из учебника (текст страницы, которая находится выше):любую точку; провести прямые,, параллельные данным, и найти угол между этими прямыми (рис. 151). В частности, теперь можем говорить о взаимно перпендикулярных скрещивающихся прямых (а: также лучах,) , если угол между ними.равен 90°. Взаимно перпендикулярными называем и отрезки, лежащие на взаимно перпендикулярных прямых. При таком расширении понятия перпендикулярности (прямых, лучей й отрезков остаются справедливыми доказанные ранее теоремы, .в-; которых перпендикулярность рассматривалась лишь для пересекающихся прямых, лучей и отрезков: признак перпендикулярности прямой и плоскости (теорема 7.1) и теорема о трех перпендикулярах (следствие 2 теоремы 12.1). Убедитесь в этом! В дальнейшем мы будем применять эти теоремы именно в этом, более широком смысле. Так, например, для того чтобы установить перпендикулярность прямой а и плоскости а, теперь можно найти на этой плоскости любые две пересекающиеся прямые, перпендикулярные а. Эти прямые могут а не пересекать. . Рис. 151 14.3. Угол между прямой и плоскостьюВ главе II мы подробно изучили два важнейших случая расположения прямой и плоскости: перпендикулярность прямой и плоскости и их параллельность. Если прямая перпендикулярна плоскости, то, она перпендикулярна любой прямой,. лежащей в этой плоскости. Поэтому естественно считать, что угол между взаимно перпендикулярными прямой и. плоскостью равен 90°. Если же прямая параллельна плоскости (или лежит в ней), то угол между ними считается равным 0°. Рассмотрим общий случай: прямая а пересекает плоскость а, но не перпендикулярна ей (рис. 152),. т. е. случай прямой, наклонной к плоскости. В этом случае, характеризуя их взаимное расположение, часто указывают, насколько прямая, отклонилась от перпендикуляра к плоскости. Например, в оптике говорят про угол падения, луча света на плоскую поверхность, т. е. про угол между прямой и перпендикуляром (нормалью), к данной плоскости (рис. 153). Но в геометрии, оценивая наклон прямой к плоскости, чаще рассматривают не этот угол, а угол, дополняющий его до 90°. А именно дается следующее определение: Рис. 152
Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, «146», 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239
Учебник: Геометрия: Учеб. для учащихся 10 кл. с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик.— М.: Просвещение, 1999. — 238 с.: ил. Все учебники по геометрии:
Учебники по геометрии за 7 классУчебники по геометрии за 8 классУчебники по геометрии за 9 классУчебники по геометрии за 10 классУчебники по геометрии за 11 класс |
|
© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.