ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009

Страница № 032.

Учебник: Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Н. П. Николаев. — М. : Мнемозина, 2009. — 191 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, «32», 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

i

1

л

-2,

1

(

)

415

6,

4

X

Рис. 6

Зачем нужна координатная прямая? Зачем характеризовать точку числом, а число — точкой? Есть ли в этом какая-либо польза? Да, есть.

Пусть, например, на координатной прямой даны две точки: А— с координатой а и В — с координатой b (обычно в таких случаях пишут короче: А(а), В(Ь)). Пусть нам надо найти расстояние d между точками А и В. Оказывается, вместо того чтобы делать геометрические измерения, достаточно воспользоваться готовой формулой р(А; В) = \а - Ь\ (р — «ро» — буква греческого алфавита; впрочем, вместо р(А; В) можно писать просто АВ).

Так, на рисунке 5 имеем:

КМ = |б,4 - 4,5| = |1,9| = 1,9;

РМ = |-4 - 4,5| = |-8,5| = 8,5;

PN = |-4 - (-2,1)| = |-4 + 2,1| = |-1,9| = 1,9.

Стремясь к лаконичности рассуждений, математики договорились вместо длинной фразы «точка А координатной прямой, имеющая координату а», использовать короткую фразу: «точка а», и на чертеже рассматриваемую точку обозначать ее координатой. Так, на рисунке 6 изображена координатная прямая, на которой отмечены точки -4; -2,1; 0; 1; 4,5; 6,4.

Пример 1. Решить уравнение \х + 1| = 3.

Решение. \х + 1| — это с геометрической точки зрения расстояние между точками х и -1 координатной прямой. Нам нужно найти такие точки х, которые удалены от точки -1 на расстояние 3. Таких точек две: -4 и 2 (рис. 7). Значит, уравнение имеет два корня: хх = -4, х2 = 2.    (Д

Координатная прямая дает нам возможность свободно переходить с алгебраического языка на геометрический и обратно. Пусть, например, число а меньше числа Ъ. На алгебраическом языке это записывают так: а < Ь; на геометрическом языке это


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, «32», 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.