ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009

Страница № 143.

Учебник: Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Н. П. Николаев. — М. : Мнемозина, 2009. — 191 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, «143», 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

§32. СОКРАЩЕНИЕ АЛГЕБРАИЧЕСКИХ ДРОБЕЙ

Новое понятие в математике редко возникает «из ничего», «на пустом месте». Оно появляется тогда, когда в нем ощущается объективная необходимость. Именно так появились в математике отрицательные числа, так появились обыкновенные и десятичные дроби.

Предпосылки для введения нового понятия «алгебраическая дробь» у нас имеются. Давайте вернемся к § 19. Обсуждая там деление одночлена на одночлен, мы рассмотрели ряд примеров. Выделим два из них.

1.    Разделить одночлен З6а3&5 на одночлен 4ab2 (см. пример 1в) из § 19).

Решали мы его так. Выражение 36а3Ъъ : 4ab2 записали, ис-

36а3Ь5    а

пользуя черту дроби: ~^2 (ведь А : В и — — одно и то же).

Это позволило выражения 36 : 4, а3 : а, Ъъ : Ъ2 также записать с использованием черты дроби, что сделало решение примера более наглядным:

36а3Ь5 36 а3 Ъ5 п 2.3 -5- =-----5- = 9а2Ь3.

4 аЬ 4 а Ъ

2.    Разделить одночлен 4х3 на одночлен 2ху (см. пример 1д) из §19).

Действуя по тому же образцу, мы получили

л з п 4jc3 4 х2 1 о 2 1 2jc26 : 2 ху = -=-----= 2л;2 - =-.

2 ху 2 х у    У У

В § 19 мы отметили, что одночлен 4л;3 не удалось разделить на одночлен 2ху так, чтобы получился одночлен. Но ведь математические модели могут содержать операцию деления любых одночленов, не обязательно таких, что один делится на другой. Поэтому математики ввели новое понятие — понятие алгебраи-

2

ческой дроби. В частности, - — алгебраическая дробь.

У

Теперь вернемся к § 26. Обсуждая там операцию деления многочлена на одночлен, мы отметили, что она не всегда выполнима. Так, в примере 2 из § 26 речь шла о делении двучлена


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, «143», 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.