ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009

Страница № 120.

Учебник: Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Н. П. Николаев. — М. : Мнемозина, 2009. — 191 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, «120», 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Пр имер 1. Разделить многочлен 2а2Ъ + 4аЪ2 на одночлен

2а.

Решение.

2Ь , 4аЪ2

(2а Ь + 4аЪг) : 2а = (2агЬ : 2а) + (4аЪг : 2а)

2а 2а

= - ■ — ■ъ + - - ъ2 = 1- а- b + 2- 1- b2 = ab + 2Ъ2. <1

2 а    2 а

Здесь мы использовали тот способ записи, который обговорили в § 19. А вот другой способ (можно применять и тот и другой, смотря по тому, какой из них вам больше нравится): выделим в каждом члене многочлена 2а2Ъ + 4аЬ2 множитель, в точности равный делителю 2а. Получим

2Ъ + 4аЬ2 = 2а • аЬ + 2а • 2Ь2.

Эту сумму можно записать в виде произведения 2а(аЪ + 2Ь2). Теперь ясно, что если это произведение разделить на 2а (на один множитель), то в частном получится ab + 2Ь2 (другой множитель).

Пример 2. Разделить многочлен 6х3 - 24х2 на 6х2.

Решение.

Первый способ.

(6х3 - 24х2) : 6х2 = (6х3 : 6х2) - (24х2 : 6х2) =

3 24х2 6 х3 24 х2 л    л л    А

= —о - —г =    ---о = 1х - 41 = х - 4.

6х 6х 6 х2 6 х2

Второй способ.

3 - 24х2 = 6х2х-6х24 = 6х2(х - 4).

Значит, частное от деления 6х3 - 24х2 на 6х2 равно х - 4. (И

Пример 3. Разделить многочлен 8а3 + 6а2Ь - Ъ на 2а2.

Решение.

3 + 6а2Ъ - b = 2а2 • 4а + 2а2 • 3Ъ-Ъ.

Поскольку в третьем члене заданного многочлена (речь идет о члене -Ь) множитель 2а2 не выделяется, деление невозможно. Эта задача некорректна. Фактически мы снова, как и в конце § 19,


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, «120», 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.