ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009

Страница № 124.

Учебник: Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Н. П. Николаев. — М. : Мнемозина, 2009. — 191 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, «124», 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

вых и алгебраических выражений. Применяется оно и в других ситуациях, как, скажем, в следующем примере, где ключ к успеху опять-таки в разложении на множители.

Пр имер. Доказать, что для любого натурального числа п выражение я3 + 3я2 + 2я делится без остатка на 6.

Решение. Пустьр(п) = п3 + 3п2 + 2я.

Если я = 1, то р(1) =1 + 3 + 2 = 6. Значит, р(1) делится на 6 без остатка.

Если я = 2, то р(2) = 23 + 3*22 + 2*2 = 8 + 12 + 4 = 24. Следовательно, и р(2) делится на 6 без остатка.

Если я = 3, то р(3) = З3 + 3 • З2 + 2 • 3 = 27 + 27 + 6 = 60. Поэтому и р(3) делится на 6 без остатка.

Но вы же понимаете, что так перебрать все натуральные числа нам не удастся. Как быть? На помощь приходят алгебраические методы.

Имеем

я3 + Зя2 + 2я = я (я + 1) (я + 2).

В самом деле,

п(п + 1) = п2 + я,

а

2 + я) (я + 2) = я3 + 2я2 + я2 + 2я = я3 + Зя2 + 2я.

Итак,

р(п) = я (я + 1) (я + 2),

т. е. р(п) есть произведение трех идущих подряд натуральных чисел я, я + 1, я + 2. Но из трех таких чисел одно обязательно делится на 3, значит, и их произведение делится на 3. Кроме того, по крайней мере одно из этих чисел — четное, т. е. делится на 2, значит, и произведение делится на 2. Итак, р(п) делится и на 2, и на 3, т. е. делится и на 6.    (В]

Все прекрасно, скажете вы, но как догадаться, что я3 + Зя2 + + 2я = я (я + 1)(я + 2)? Ответ очевиден: надо учиться разложению многочленов на множители. К этому и перейдем: в каждом из следующих параграфов этой главы мы будем изучать тот или иной прием разложения многочлена на множители.


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, «124», 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.