ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] « Алгебра » [ Геометрия ] [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009

Алгебра, 7 класс. Часть 1. Учебник (А. Г. Мордкович, Н. П. Николаев) 2009

Страница № 161.

Учебник: Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Н. П. Николаев. — М. : Мнемозина, 2009. — 191 с.: ил.

Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, «161», 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Пример 1. Дана функция у = f(x), где f(x) = Xs. Вычислить:

а)    /(1);    д) /(a - 1);

б)    /(-4);    е) /(Зх);

в)    /(а);    ж) /(-*).

г)    /(2а);

Решение. Во всех случаях план действий один и тот же: нужно в выражении f(x) подставить вместо х то значение аргумента, которое указано в скобках, и выполнить соответствующие вычисления и преобразования.

а)    /(1) = 1» - 1;

б)    /(-4) = (-4)3 = -64;

в)    /(а) = а3;

г)    f(2a) = (2а)3 = 8а3;

д)    f(a - 1) = (а - I)3;

е)    /43*) = (Зх)3 = 27л:3; ж) f(-x) = (~xf = -х3.    <1

Замечание. Разумеется, вместо буквы / можно использовать любую другую букву (в основном из латинского алфавита): g(x), h(x), s(x) и т. д.

Пример 2. Даны две функции: у = f(x), где f(x) = х2, и у = g(x), где g(x) = х3. Доказать, что:

а)    f(-x) = f(x); б) g(-x) = ~g(x).

Решение, а) Так как f(x) = х2, то f(-x) = (-х)2 = х2. Итак, f(x) = х2, f(-x) = х2, значит, f(-x) = f(x).

б)    Так как g(x) = х3, то g(~x) = (-х)3 = -хг. Итак, g(x) = хг, g(~x) = -Xs, т. е. g(-x) = ~g(x).    d

Использование математической модели вида у = f(x) оказывается удобным во многих случаях, в частности тогда, когда реальный процесс описывается различными формулами на разных промежутках изменения независимой переменной.

Пример 3. Дана функция у = f(x), где

{2х, если х < 0;

2

х , если х > 0.

а)    Вычислить: /(-5), /(-2), /(1,5), /(4), /(0).

б)    Построить график функции у = f(x).


Страницы учебника:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, «161», 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193



Все учебники по алгебре:





© 2022 ќксперты сайта vsesdali.com проводЯт работы по составлению материала по предложенной заказчиком теме. ђезультат проделанной работы служит источником для написания ваших итоговых работ.